Masterpact NT and NW

LV power circuit breakers and switch-disconnectors

Catalogue 2011

Functions and characteristics

Circuit breakers
and switch-disconnectors
NT06 to NT16

(1) $50^{\circ} \mathrm{C}$: rear vertical connected. Refer to temperature derating tables for other connection types.
(2) See the current-limiting curves in the "additional characteristics" section.
(3) SELLIM system.
(4) Available for 480 V NEMA.
(5) Suitable for motor control (direct-on-line starting).

Common characteristics		$3 / 4$
Number of poles Ui 1000 Rated insulation voltage (V) Uimp 12 Impulse withstand voltage (kV) Ue 690 Rated operational voltage (V AC 50/60 Hz) IEC 60947-2 $-\times 4$ Suitability for isolation IEC 60664-1 3 Degree of pollution \begin{tabular}{l}		
\hline
\end{tabular} | | |

Basic sweatchgear

Circuit-breaker as per IEC 60947-2
Rated current (A)
In \quad at $40^{\circ} \mathrm{C} / 50^{\circ} \mathrm{C}{ }^{(1)}$
Rating of 4th pole (A)
Sensor ratings (A)

Type of circuit breaker		
Ultimate breaking capacity (kA rms)	Icu	$220 / 415 \mathrm{~V}$
V AC 50/60 Hz		440 V
		525 V
		690 V
Rated service breaking capacity (kA rms)	Ics	$\%$ Icu
Utilisation category	Icw	0.5 s
Rated short-time withstand current (kA rms)	1 s	
V AC 50/60 Hz		3 s
Integrated instantaneous protection (kA peak $\pm 10 \%)$		
Rated making capacity (kA peak)	Icm	$220 / 415 \mathrm{~V}$
V AC 50/60 Hz		440 V
		525 V
		690 V

Break time (ms) between tripping order and arc extinction
Closing time (ms)

Circuit-breaker as per NEMA AB1

Breaking capacity (kA) 240 V

V AC $50 / 60 \mathrm{~Hz}$	480 V

600 V

Switch-disconnector as per IEC 60947-3 and Annex A	
Type of switch-disconnector	
Rated making capacity (kA peak) Icm	220 V
AC23A/AC3 category V AC $50 / 60 \mathrm{~Hz}$	440 V
	525/690 V
Rated short-time withstand current (kArms) Icw	0.5 s
AC23A/AC3 category V AC 50/60 Hz	1 s
	3 s
Ultimate breaking capacity Icu (kA rms) with an external protection relay Maximum time delay: 350 ms	690 V
Mechanical and electrical durability as per IEC 60947-2/3 at In/le	
Service life \quad Mechanical without maintenanceC/O cycles $\times 1000$	
Type of circuit breaker	
C/O cycles $\times 1000$ Electrical without maintenance IEC 60947-2	$\begin{aligned} & 440 \mathrm{~V}^{(4)} \\ & 690 \mathrm{~V} \end{aligned}$
Type of circuit breaker or switch-disconnector	
C/O cycles $\times 1000$ Electrical without maintenance IEC 60947-3	$\begin{aligned} & 440 \mathrm{~V}^{(4)} \\ & 690 \mathrm{~V} \end{aligned}$
Type of circuit breaker or switch-disconnector Rated operationnal current	AC3 ${ }^{(5)}$
Motor power	$\begin{aligned} & 380 / 415 \mathrm{~V}(\mathrm{~kW}) \\ & 440 \mathrm{~V}(\mathrm{~kW}) \end{aligned}$
C/O cycles x 1000 Electrical IEC 60947-3 Annex M/IEC 60947-4-1	$\begin{aligned} & 440 \mathrm{~V}^{(4)} \\ & 690 \mathrm{~V} \end{aligned}$

Sensor selection

Sensor rating (A)	$250^{(1)}$	400	630	800	1000	1250	1600
Ir threshold setting(A)	100 to 250	160 to 400	250 to 630	320 to 800	400 to 1000	500 to 1250	640 to 1600

(1) For circuit-breaker NT02, please consult us

NT06			NT08	NT10	NT12		NT16
$\begin{array}{\|l} 630 \\ 630 \\ \hline \end{array}$			$\begin{array}{\|l\|} 800 \\ 800 \end{array}$	$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$	$\begin{aligned} & 1250 \\ & 1250 \end{aligned}$		$\begin{array}{\|l\|l\|} \hline 1600 \\ 1600 \\ \hline \end{array}$
400 to 630			400 to 800	400 to 1000	630	250	800 to 1600
H1	H2	L1 ${ }^{(2)}$			H1	H2	
$\begin{array}{\|l} 42 \\ 42 \\ 42 \\ 42 \\ \hline \end{array}$	$\begin{aligned} & 50 \\ & 50 \\ & 42 \\ & 42 \end{aligned}$	$\begin{aligned} & 150 \\ & 130 \\ & 100 \\ & 25 \end{aligned}$			$\begin{aligned} & 42 \\ & 42 \\ & 42 \\ & 42 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 42 \\ & 42 \end{aligned}$	
100%					100%		
B	B	A			B	B	
	$\begin{aligned} & 36 \\ & 36 \\ & 20 \end{aligned}$	10			$\begin{aligned} & 42 \\ & 42 \\ & 24 \end{aligned}$	$\begin{aligned} & 36 \\ & 36 \\ & 20 \end{aligned}$	
-	90	$10 \times \ln ^{(3)}$			-	90	
$\begin{aligned} & 88 \\ & 88 \\ & 88 \\ & 88 \end{aligned}$	$\begin{aligned} & 105 \\ & 105 \\ & 88 \\ & 88 \\ & \hline \end{aligned}$	$\begin{aligned} & 330 \\ & 286 \\ & 220 \\ & 52 \end{aligned}$			$\begin{aligned} & 88 \\ & 88 \\ & 88 \\ & 88 \end{aligned}$	$\begin{aligned} & 105 \\ & 105 \\ & 88 \\ & 88 \end{aligned}$	
25	25	9			25	25	
< 50					< 50		
$\begin{array}{\|l} 42 \\ 42 \\ 42 \\ \hline \end{array}$	$\begin{aligned} & 50 \\ & 50 \\ & 42 \end{aligned}$	$\begin{aligned} & 150 \\ & 100 \\ & 25 \end{aligned}$			$\begin{aligned} & 42 \\ & 42 \\ & 42 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 42 \end{aligned}$	

| HA | HA |
| :--- | :--- | :--- |
| 75 | 75 |
| 75 | 75 |
| 75 | 75 |
| 36 | 36 |
| 36 | 36 |
| 20 | 20 |
| 36 | 36 |

HA
75
75
75
36
36
20
36

12.5												
H1	H2	L1	H1	H2	L1	H1	H2	L1	H1	H2	H1	H2
630			800			1000			125			
6	6	3	6	6	3	6	6	3	6	6	3	3
3	3	2	3	3	2	3	3	2	3	3	1	1
H1/H2/HA												
630			800			1000			1250		1600	
6			6			6			6		3	
3			3			3			3		1	
H1/H2/HA												
500			630			800			1000		1000	
$\leqslant 250$			$\begin{aligned} & 250 \text { to } 335 \\ & 300 \text { to } 400 \end{aligned}$			335 to 450			450 to 560		450 to 560	
$\leqslant 300$						400 to 500			500 to 630		500 to 630	

Functions and characteristics

Circuit breakers
and switch-disconnectors
NW08 to NW63

(1) $50^{\circ} \mathrm{C}$: rear vertical connected. Refer to temperature derating tables for other connection types.
(2) See the current-limiting curves in the "additional characteristics" section.
(3) Equipped with a trip unit with a making current of 90 kA peak.
(4) External protection must comply with permissible thermal constraints of the circuit breaker (please consult us)
No fault-trip indication by the SDE or the reset button.
(5) Available for 480 V NEMA.
(6) Suitable for motor control (direct-on-line starting).
(7) The use of NW08 to NW2O H1 in IT systems is limited to 500 V network voltage.

Common characteristics		
Number of poles		3/4
Rated insulation voltage (V)	Ui	1000/1250
Impulse withstand voltage (kV)	Uimp	12
Rated operational voltage (V AC 50/60 Hz)	Ue	690/1150
Suitability for isolation	IEC 60	
Degree of pollution	IEC 60	4 (1000 V) / 3 (1250 V)
Basic circuit-breaker		
Circuit-breaker as per IEC 60947-2		
Rated current (A)		at $40^{\circ} \mathrm{C} / 50^{\circ} \mathrm{C}{ }^{(1)}$
Rating of 4th pole (A)		
Sensor ratings (A)		
Type of circuit breaker		
Ultimate breaking capacity (kA rms)$\text { V AC } 50 / 60 \mathrm{~Hz}$	Icu	220/415/440 V
		525 V
		690 V
		1150 V
Rated service breaking capacity (kA rms)	Ics	\% Icu
Utilisation category		
Rated short-time withstand current (kA rms) V AC $50 / 60 \mathrm{~Hz}$	Icw	1 s
		3 s
Integrated instantaneous protection (kA peak ± 10 \%)		
Rated making capacity (kA peak)$\text { V AC } 50 / 60 \mathrm{~Hz}$	Icm	220/415/440 V
		525 V
		690 V
		1150 V
Break time (ms) between tripping order and arc extinction		
Closing time (ms)		
Circuit-breaker as per NEMA AB1		
Breaking capacity (kA) V AC $50 / 60 \mathrm{~Hz}$		240/480 V
		600 V

Unprotected circuit-breaker

Tripping by shunt trip as per IEC 60947-2
Type of circuit breaker

Ultimate breaking capacity (kA rms) V AC $50 / 60 \mathrm{~Hz}$	Icu	$220 . .690 \mathrm{~V}$
Rated service breaking capacity (kA rms)	Ics	$\%$ Icu
Rated short-time withstand current (kA rms)	Icw	1 s

Overload and short-circuit protection
External protection relay: short-circuit protection, maximum delay: $350 \mathrm{~ms}^{(4)}$
Rated making capacity (kA peak) V AC $50 / 60 \mathrm{~Hz} \quad$ Icm $220 . . .690 \mathrm{~V}$

Switch-disconnector as per IEC 60947-3 and Annex A

Type of switch-disconnector		
Rated making capacity (kA peak)	Icm	220.
AC23A/AC3 category V AC $50 / 60 \mathrm{~Hz}$		1150 V
Rated short-time withstand current (kA rms)	Icw	1 s
AC23A/AC3 category V AC $50 / 60 \mathrm{~Hz}$		3 s
Earthing switch		
Latching capacity (kA peak)		135
Rating short time withstand (kA rms)	Icw	1 s

Mechanical and electrical durability as per IEC 60947-2/3 at In/le

Service life
Mechanical with maintenance
C/O cycles $\times 1000$

Rated current		In (A)	
C/O cycles x 1000	Electrical	without maintenance	$440 \mathrm{~V}^{(5)}$
IEC 60947-2			690 V

1150 V

Type of circuit breaker or switch-disconnector		
Rated operational current	le (A)	AC23A
C/O cycles x 1000 Electrical	without maintenance	$440 \mathrm{~V}^{(5)}$
IEC 60947-3		690 V
Type of circuit breaker or switch-disconnector		
Rated operational current	le (A)	AC3 ${ }^{(6)}$
Motor power		380/415 V (kW)
		$440 \mathrm{~V}^{(5)}(\mathrm{kW})$
		690 V (kW)
C/O cycles $\times 1000$ Electrical	without maintenance	440/690 $\mathrm{V}^{(5)}$
IEC 60947-3 Annex M/IEC 60947-4-1		

Sensor selection
Sensor rating (A)
Ir threshold setting(A)

$250^{(1)}$	400	630	800	1000	1250	1600	2000	2500	3200	4000	5000	6300
100 to 250	160 to 400	250 to 630	320 to 800	400 to 1000	to 1250 to	630 to 1600	800 to 2000	1000 to 2500	1250 to 3200	1600 to 4000	2000 to 5000	2500 to 6300

(1) For circuit-breaker NW02, please consult us.

NW08 NW10 NW12 NW16 NW20

60 Hz
50 Hz

Micrologic A control units protect power circuits. They also offer measurements, display, communication and current maximeters. Version 6 provides earth-fault protection, version 7 provides earth-leakage protection.

1 long-time threshold and tripping delay
2 overload alarm (LED) at 1,125 Ir
3 short-time pick-up and tripping delay
4 instantaneous pick-up
5 earth-leakage or earth-fault pick-up and tripping delay
6 earth-leakage or earth-fault test button
7 long-time rating plug screw
8 test connector
9 lamp test, reset and battery test
10 indication of tripping cause
11 digital display
12 three-phase bargraph and ammeter
13 navigation buttons

"Ammeter" measurements

Micrologic A control units measure the true (rms) value of currents.
They provide continuous current measurements from 0.2 to 1.2 In and are accurate to within 1.5% (including the sensors).
A digital LCD screen continuously displays the most heavily loaded phase (Imax) or displays the $I_{1}, I_{2}, I_{3}, I_{N}, I_{9}, I_{n}$, stored-current (maximeter) and setting values by successively pressing the navigation button.
The optional external power supply makes it possible to display currents < 20 \% In Below 0.1 In, measurements are not significant. Between 0.1 and 0.2 In , accuracy changes linearly from 4 \% to 1.5 \%.

Communication option

In conjunction with the COM communication option, the control unit transmits the following:

- settings
- all "ammeter" measurements
- tripping causes
- maximeter readings.

Protection

Protection thresholds and delays are set using the adjustment dials.

Overload protection

True rms long-time protection.
Thermal memory: thermal image before and after tripping
Setting accuracy may be enhanced by limiting the setting range using a different long-time rating plug.
Overload protection can be cancelled using a specific LT rating plug "Off".

Short-circuit protection

Short-time (rms) and instantaneous protection. Selection of $I^{2} t$ type (ON or OFF) for short-time delay.

Earth-fault protection

Residual or source ground return earth fault protection.
Selection of $1^{2} t$ type (ON or OFF) for delay.
Residual earth-leakage protection (Vigi).
Operation without an external power supply.
Ω Protected against nuisance tripping.
\simeq DC-component withstand class A up to 10 A .

Neutral protection

On three-pole circuit breakers, neutral protection is not possible.
On four-pole circuit breakers, neutral protection may be set using a three-position switch: neutral unprotected (4P 3d), neutral protection at $0.5 \operatorname{Ir}(4 \mathrm{P} 3 \mathrm{~d}+\mathrm{N} / 2)$, neutral protection at $\operatorname{Ir}(4 \mathrm{P} 4 \mathrm{~d})$.

Zone selective interlocking (ZSI)

A ZSI terminal block may be used to interconnect a number of control units to provide total discrimination for short-time and earth-fault protection, without a delay before tripping.

Overload alarm

A yellow alarm LED goes on when the current exceeds the long-time trip threshold.

Fault indications

LEDs indicate the type of fault:
■ overload (long-time protection Ir)

- short-circuit (short-time Isd or instantaneous li protection)

■ earth fault or earth leakage (\lg or $I \Delta n$)

- internal fault (Ap).

Battery power

The fault indication LEDs remain on until the test/reset button is pressed. Under normal operating conditions, the battery supplying the LEDs has a service life of approximately 10 years.

Test

A mini test kit or a portable test kit may be connected to the test connector on the front to check circuit-breaker operation. For Micrologic 6.0 A and 7.0 A control units, the operation of earth-fault or earth-leakage protection can be checked by pressing the test button located above the test connector.

Note: all current-based protection functions require no auxiliary source.
The test / reset button resets maximeters, clears the tripping indication and tests the battery.

Functions and characteristics

Micrologic control units
 Micrologic E "energy"

Micrologic E control units protect power circuits. They also offer measurements, display, communication and current maximeters. Version 6 provides earth-fault protection.

1 long-time threshold and tripping delay
2 overload alarm (LED) at 1,125 Ir
3 short-time pick-up and tripping delay
4 instantaneous pick-up
earth-leakage or earth-fault pick-up and tripping delay
earth-leakage or earth-fault test button
long-time rating plug screw
8 test connector
9 lamp test, reset and battery test
10 indication of tripping cause
11 digital display
12 three-phase bargraph and ammeter
13 navigation button "quick View" (only with Micrologic E)
14 navigation button to view menu contents
15 navigation button to change menu
(1) Display on FDM121 only.

Note: Micrologic E control units come with a transparent leadseal cover as standard.

"Energy meter" measurements

In addition to the ammeter measurements of Micrologic A
Micrologic E control units measure and display:

- current demand

■ voltages: phase to phase, phase to neutral, average ${ }^{(1)}$ and unbalanced ${ }^{(1)}$

- instantaneous power: P, Q, S
- power factor: PF

■ power demand: P demand
■ energy: Ep, Eq ${ }^{(1)}$, Es ${ }^{(1)}$.
Accuracy of active energy Ep is 2% (including the sensors). The range of measurement is the same as current with Micrologic A, depending of an external power supply module (24 V DC).

Communication option

In conjunction with the COM communication option, the control unit transmits the following:

- settings

■ all "ammeter" and "energy" measurements
■ enable connection to FDM121
■ tripping causes

- maximeter / minimeter readings.

Protection

Protection thresholds and delays are set using the adjustment dials.

Overload protection

True rms long-time protection.
Thermal memory: thermal image before and after tripping
Setting accuracy may be enhanced by limiting the setting range using a different longtime rating plug. Overload protection can be cancelled using a specific LT rating plug "Off".

Short-circuit protection

Short-time (rms) and instantaneous protection. Selection of $I^{2 t}$ type (ON or OFF) for short-time delay.

Earth-fault protection

Source ground return earth fault protection.
Selection of $I^{2} t$ type (ON or OFF) for delay.

Neutral protection

On three-pole circuit breakers, neutral protection is not possible.
On four-pole circuit breakers, neutral protection may be set using a three-position switch: neutral unprotected (4P 3d), neutral protection at 0.5 Ir (4P 3d + N/2), neutral protection at Ir (4P 4d).

Zone selective interlocking (ZSI)

A ZSI terminal block may be used to interconnect a number of control units to provide total discrimination for short-time and earth-fault protection, without a delay before tripping.

Overload alarm

A yellow alarm LED goes on when the current exceeds the long-time trip threshold.

M2C programmable contacts

The M2C (two contacts) programmable contacts may be used to signal envents (Ir, Isd, Alarm Ir, Alarm Ig, Ig). They can be programmed using the keypad on the Micrologic E control unit or remotely using the COM option (BCM ULP).

Fault indications

LEDs indicate the type of fault:
■ overload (long-time protection Ir)
■ short-circuit (short-time Isd or instantaneous li protection)
■ earth fault (Ig)

- internal fault (Ap).

Trip history

The trip history displays the list of the last 10 trips. For each trip, the following indications are recorded and displayed:
■ the tripping cause: Ir, Isd, li, Ig or Auto-protection (Ap) trips
■ the date and time of the trip (requires communication option).

Battery power

The fault indication LEDs remain on until the test/reset button is pressed. Under normal operating conditions, the battery supplying the LEDs has a service life of approximately 10 years.

Test

A mini test kit or a portable test kit may be connected to the test connector on the front to check circuit-breaker operation. For Micrologic 6.0 E control units, the operation of earth-fault or earth-leakage protection can be checked by pressing the test button located above the test connector.

Note: all current-based protection functions require no auxiliary source.
The test / reset button resets maximeters, clears the tripping indication and tests the battery.

Micrologic control units
Micrologic P"power"

Micrologic P control units include all the functions offered by Micrologic A.
In addition, they measure voltages and calculate power and energy values.
They also offer new protection functions based on currents, voltages, frequency and power reinforce load protection in real time

[^0]
Protection
 Protection settings

The adjustable protection functions are identical to those of Micrologic A (overloads, short-circuits, earth-fault and earth-leakage protection).

Fine adjustment

Within the range determined by the adjustment dial, fine adjustment of thresholds (to within one ampere) and time delays (to within one second) is possible on the keypad or remotely using the COM option (BCM ULP)

IDMTL (Inverse Definite Minimum Time lag) setting

Coordination with fuse-type or medium-voltage protection systems is optimised by adjusting the slope of the overload-protection curve. This setting also ensures better operation of this protection function with certain loads.

Neutral protection

On three-pole circuit breakers, neutral protection may be set using the keypad or remotely using the COM option (BCM ULP), to one of four positions: neutral unprotected (4P 3d), neutral protection at $0.5 \mathrm{lr}(4 \mathrm{P} 3 \mathrm{~d}+\mathrm{N} / 2)$, neutral protection at Ir (4 P 4 d) and neutral protection at 1,6 $\operatorname{Ir}(4 \mathrm{P} \mathrm{3d}+1,6 \mathrm{~N})$. Neutral protection at 1,6 Ir is used when the neutral conductor is twice the size of the phase conductors (major load imbalance, high level of third order harmonics). On four-pole circuit breakers, neutral protection may be set using a three-position switch or the keypad: neutral unprotected (4P 3d), neutral protection at $0.5 \operatorname{Ir}(4 \mathrm{P} 3 \mathrm{~d}$ $+\mathrm{N} / 2$), neutral protection at $\operatorname{Ir}(4 \mathrm{P} 4 \mathrm{~d})$. Neutral protection produces no effect if the long-time curve is set to one of the IDMTL protection settings.

Programmable alarms and other protection

Depending on the thresholds and time delays set using the keypad or remotely using the COM option (BCM ULP), the Micrologic P control unit monitors currents and voltage, power, frequency and the phase sequence. Each threshold overrun is signalled remotely via the COM option (BCM ULP). Each threshold overrun may be combined with tripping (protection) or an indication carried out by an optional M2C or M6C programmable contact (alarm), or both (protection and alarm).

Load shedding and reconnection

Load shedding and reconnection parameters may be set according to the power or the current flowing through the circuit breaker. Load shedding is carried out by a supervisor via the COM option (BCM ULP) or by an M2C or M6C programmable contact.

M2C / M6C programmable contacts

The M2C (two contacts) and M6C (six contacts) auxiliary contacts may be used to signal threshold overruns or status changes. They can be programmed using the keypad on the Micrologic P control unit or remotely using the COM option (BCM ULP).

Communication option (COM)

The communication option may be used to:
■ remotely read and set parameters for the protection functions
■ transmit all the calculated indicators and measurements

- signal the causes of tripping and alarms

■ consult the history files and the maintenance-indicator register.

- maximeter reset.

An event log and a maintenance register, stored in control-unit memory but not available locally, may be accessed in addition via the COM option (BCM ULP).

[^1]Functions and characteristics

Micrologic control units
Micrologic P"power"

Default display.

Display of a voltage.

Display of a frequency.

Display of a maximum current

Display of a demand power.

Ion software.

Measurements

(
The Micrologic P control unit calculates in real time all the electrical values $(V, A, W$, VAR, VA, Wh, VARh, VAh, Hz), power factors and $\cos \varphi$ factors.
The Micrologic P control unit also calculates demand current and demand power over an adjustable time period. Each measurement is associated with a minimeter and a maximeter.
In the event of tripping on a fault, the interrupted current is stored. The optional external power supply makes it possible to display the value with the circuit breaker open or not supplied.
Instantaneous values
The value displayed on the screen is refreshed every second.
Minimum and maximum values of measurements are stored in memory (minimeters and maximeters).

Currents					
1 rms	A		2		N
	A	E-fault			
I max rms	A	1	2	3	N
	A	E-fault			
Voltages					
U rms	V	12	23	31	
V rms	V	1N	2N	3N	
U average rms	V	(U12 +	+ U		
U unbalance	\%				
Power, energy					
P active, Q reactive, S apparent	W, Var, VA	Totals			
E active, E reactive, E apparent	Wh, VARh, VAh	Totals consumed - supplied Totals consumed Totals supplied			
Power factor	PF	Total			
Frequencies					
F	Hz				

Demand metering
The demand is calculated over a fixed or sliding time window that may be programmed from 5 to 60 minutes. According to the contract signed with the power supplier, an indicator associated with a load shedding function makes it possible to avoid or minimise the costs of overrunning the subscribed power. Maximum demand values are systematically stored and time stamped (maximeter).

Currents	A				
I demand	A	1	2	3	N
	E-fault		E-leakage		
Imax demand	A	1	2	3	N
		E-fault		E-leakage	
Power	W, Var, VA	Totals			
P, Q, S demand	W, Var, VA	Totals			
P, Q, S max demand					

Minimeters and maximeters
Only the current and power maximeters may be displayed on the screen.

Time-stamping

Time-stamping is activated as soon as time is set manually or by a supervisor.
No external power supply module is required (max. drift of 1 hour per year).

Reset

An individual reset, via the keypad or remotely, acts on alarms, minimum and maximum data, peak values, the counters and the indicators.
Additional measurements accessible with the COM option (BCM ULP)
Some measured or calculated values are only accessible with the COM
communication option:
■ I peak / $\sqrt{2}$, $\left(I_{1}+I_{2}+I_{3}\right) / 3$, I unbalance
■ load level in \% Ir

- total power factor.

The maximeters and minimeters are available only via the COM option (BCM ULP) for use with a supervisor.

Additional info

Accuracy of measurements (including sensors):
■ voltage (V) 0.5%

- current (A) 1.5 \%
- frequency $(\mathrm{Hz}) 0.1 \%$
- power (W) and energy $(W h) 2 \%$.

Display of a tripping history.

Display after tripping.

RSU configuration screen for a Micrologic.

Histories and maintenance indicators

\qquad 8
The last ten trips and alarms are recorded in two separate history files that may be displayed on the screen

- tripping history:
\square type of fault
\square date and time
\square values measured at the time of tripping (interrupted current, etc.)
- alarm history:
\square type of alarm
\square date and time
\square values measured at the time of the alarm.
All the other events are recorded in a third history file which is only accessible through the communication network.
■ Event log history (only accessible through the communication network)
\square modifications to settings and parameters
\square counter resets
\square system faults:
\square fallback position
\square thermal self-protection
- loss of time
\square overrun of wear indicators
\square test-kit connections
\square etc.
Note:
All the events are time stampled: time-stamping is activated as soon as time is set manually or by a supervisor. No external power supply module is required (max. drift of 1 hour per year).

Maintenance indicators with COM option (BCM ULP)

A number of maintenance indicators may be called up on the screen to better plan for device maintenance:

- contact wear

■ operation counter

- cumulative total
\square total since last reset.
Additional maintenance indicators are also available through the COM network, and can be used as an aid in troubleshooting:
■ highest current measured
- number of test-kit connections

■ number of trips in operating mode and in test mode.

Additional technical characteristics

Safety

Measurement functions are independent of the protection functions
The high-accuracy measurement module operates independently of the protection module.
Simplicity and multi-language
Navigation from one display to another is intuitive. The six buttons on the keypad provide access to the menus and easy selection of values. When the setting cover is closed, the keypad may no longer be used to access the protection settings, but still provides access to the displays for measurements, histories, indicators, etc.
Micrologic is also multi-language, including the following languages: English,
Spanish, Portuguese, Russian, Chinese, French, German..

Intelligent measurement

Measurement-calculation mode:
■ energies are calculated on the basis of the instantaneous power values, in two manners:
\square the traditional mode where only positive (consumed) energies are considered \square the signed mode where the positive (consumed) and negative (supplied) energies are considered separately
■ measurement functions implement the new "zero blind time" concept which consists in continuously measuring signals at a high sampling rate. The traditional "blind window" used to process samples no longer exists. This method ensures accurate energy calculations even for highly variable loads (welding machines, robots, etc.).

Always powered

All current-based protection functions require no auxiliary source. Voltage-based protection functions are connected to AC power via a voltage measurement input built into the circuit breaker.

Stored information

The fine setting adjustments, the last 100 events and the maintenance register remain in the control-unit memory even when power is lost.

Locking
 On the device

Access to pushbuttons protected by transparent cover.

Pushbutton locking using a padlock.

OFF position locking using a keylock.

OFF position locking using a padlock.

Pushbutton locking VBP

The transparent cover blocks access to the pushbuttons used to open and close the device.
It is possible to independently lock the opening button and the closing button.
The locking device is often combined with a remote operating mechanism.
The pushbuttons may be locked using either:

- three padlocks (not supplied)
- lead seal
- two screws.

Device locking in the OFF position VCPO by padlocks, VSPO by keylocks

The circuit breaker is locked in the OFF position by physically maintaining the opening pushbutton pressed down:
■ using padlocks (one to three padlocks, not supplied), shackle diameter: 5 to 8 mm - using keylocks (one or two different keylocks, supplied).

Keys may be removed only when locking is effective (Profalux or Ronis type locks).
The keylocks are available in any of the following configurations:
■ one keylock
■ one keylock mounted on the device + one identical keylock supplied separately for interlocking with another device

- two different key locks for double locking.

Profalux and Ronis keylocks are compatible with each other.
A locking kit (without locks) is available for installation of one or two keylocks (Ronis, Profalux, Kirk or Castell).

Accessory-compatibility

For Masterpact NT: 3 padlocks or 1 keylock
For Masterpact NW: 3 padlocks and/or 2 keylocks

Cable-type door interlock IPA

This option prevents door opening when the circuit breaker is closed and prevents circuit breaker closing when the door is open.
For this, a special plate associated with a lock and a cable is mounted on the right side of the circuit breaker.
With this interlock installed, the source changeover function cannot be implemented.

Functions and characteristics

Locking
On the chassis

"Disconnected" position locking by padlocks.

"Disconnected" position locking by keylocks.

Door interlock.

Racking interlock.

Mismatch protection.
"Disconnected" position locking by padlocks (standard) or keylocks (VSPD option)
Mounted on the chassis and accessible with the door closed, these devices lock the circuit breaker in the "disconnected" position in two manners:

- using padlocks (standard), up to three padlocks (not supplied)

■ using keylocks (optional), one or two different keylocks are available.
Profalux and Ronis keylocks are available in different options:
■ one keylock
■ two different keylocks for double locking
■ one (or two) keylocks mounted on the device + one (or two) identical keylocks supplied separately for interlocking with another device.
A locking kit (without locks) is available for installation of one or two keylocks (Ronis, Profalux, Kirk or Castell).

"Connected", "disconnected" and "test" position locking

The "connected", "disconnected" and "test" positions are shown by an indicator andc are mechanically indexed. The exact position is obtained when the racking handle blocks. A release button is used to free it.
As standard, the circuit breaker can be locked only in "disconnected position". On request, the locking system may be modified to lock the circuit breaker in any of the three positions: "connected", "disconnected" or "test".

Door interlock catch VPEC

Mounted on the right or left-hand side of the chassis, this device inhibits opening of the cubicle door when the circuit breaker is in "connected" or "test" position. It the breaker is put in the "connected" position with the door open, the door may be closed without having to disconnect the circuit breaker.

Racking interlock VPOC

This device prevents insertion of the racking handle when the cubicle door is open.

Cable-type door interlock IPA

This option is identical for fixed and drawout versions.

Racking interlock between crank and OFF pushbutton IBPO (for NW only)

This option makes it necessary to press the OFF pushbutton in order to insert the racking handle and holds the device open until the handle is removed.

Automatic spring discharge before breaker removal DAE (for NW only)

This option discharges the springs before the breaker is removed from the chassis.

Mismatch protection VDC

Mismatch protection ensures that a circuit breaker is installed only in a chassis with compatible characteristics. It is made up of two parts (one on the chassis and one on the circuit breaker) offering twenty different combinations that the user may select.

Indication contacts

Indication contacts are available:
■ in the standard version for relay applications ■ in a low-level version for control of PLCs and electronic circuits.
M2C and M6C contacts may be programmed via the Micrologic E, P and H control units.

ON/OFF indication contacts (OF) (micro switch type).

Additional "fault-trip" indication contacts (SDE).

ON/OFF indication contacts OF

Two types of contacts indicate the ON or OFF position of the circuit breaker:

- micro switch type changeover contacts for Masterpact NT
- rotary type changeover contacts directly driven by the mechanism for Masterpact NW. These contacts trip when the minimum isolation distance between the main circuit-breaker contacts is reached.

OF			NT	NW
Supplied as standard			4	4
Maximum number			4	12
$\begin{aligned} & \text { Breaking capacity (A) } \\ & \text { p.f.: } 0.3 \\ & \text { AC12/DC12 } \end{aligned}$	Standard		Minim	$100 \mathrm{~mA} / 24 \mathrm{~V}$
	VAC	240/380	6	$10 / 6{ }^{(1)}$
		480	6	$10 / 6{ }^{(1)}$
		690	6	6
	V DC	24/48	2.5	$10 / 6{ }^{(1)}$
		125	0.5	$10 / 6{ }^{(1)}$
		250	0.3	3
	Low-level		Minim	$2 \mathrm{~mA} / 15 \mathrm{~V}$
	VAC	24/48	5	6
		240	5	6
		380	5	3
	VDC	24/48	5/2.5	6
		125	0.5	6
		250	0.3	3

(1) Standard contacts: 10 A; optional contacts: 6 A.

"Fault-trip" indication contacts SDE

Circuit-breaker tripping due to a fault is signalled by:

- a red mechanical fault indicator (reset)

■ one changeover contact SDE.
Following tripping, the mechanical indicator must be reset before the circuit breaker may be closed. One SDE is supplied as standard. An optimal SDE may be added.
This latter is incompatible with the electrical reset after fault-trip option (RES).

SDE			NT/NW
Supplied as standard			1
Maximum number			2
$\begin{aligned} & \text { Breaking capacity (A) } \\ & \text { p.f.: } 0.3 \\ & \text { AC12/DC12 } \end{aligned}$	Standard		Minimum load: $100 \mathrm{~mA} / 24 \mathrm{~V}$
	V AC	240/380	5
		480	5
		690	3
	V DC	24/48	3
		125	0.3
		250	0.15
	Low-level		Minimum load: $2 \mathrm{~mA} / 15 \mathrm{~V}$
	VAC	24/48	3
		240	3
		380	3
	V DC	24/48	3
		125	0.3
		250	0.15

Combined "connected/closed" contacts EF

The contact combines the "device connected" and the "device closed" information to produce the "circuit closed" information. Supplied as an option for Masterpact NW, it is mounted in place of the connector of an additional OF contact.

EF			NW
Maximum number			8
$\begin{aligned} & \text { Breaking capacity (A) } \\ & \text { p.f.: } 0.3 \\ & \text { AC12/DC12 } \end{aligned}$	Standard		Minimum load: $100 \mathrm{~mA} / 24 \mathrm{~V}$
	V AC	240/380	6
		480	6
		690	6
	V DC	24/48	2.5
		125	0.8
		250	0.3
	Low-level		Minimum load: $2 \mathrm{~mA} / 15 \mathrm{~V}$
	V AC	24/48	5
		240	5
		380	5
	V DC	24/48	2.5
		125	0.8
		250	0.3

Indication contacts

CE, CD and CT "connected/disconnected/test" position carriage switches.

M2C programmable contacts: circuit-breaker internal relay with two contacts.

M6C programmable contacts: circuit-breaker external relay with six independent changeover contacts controlled from the circuit breaker via a three-wire connection. (maximum length is 10 meters).

"Connected", "disconnected" and "test" position carriage switches

Three series of optional auxiliary contacts are available for the chassis:
■ changeover contacts to indicate the "connected" position CE

- changeover contacts to indicate the "disconnected" position CD. This position is indicated when the required clearance for isolation of the power and auxiliary circuits is reached
■ changeover contacts to indicate the "test" position CT. In this position, the power circuits are disconnected and the auxiliary circuits are connected.

Additional actuators

A set of additional actuators may be installed on the chassis to change the functions of the carriage switches.

M2C / M6C programmable contacts

These contacts, used with the Micrologic E, P and H control units, may be programmed via the control unit keypad or via a supervisory station with the COM communication option. They require an external power supply module. The M2C (two contacts) and M6C (six contacts) auxiliary contacts may be used to signal threshold overruns or status changes. They can be programmed using the keypad on the Micrologic P control unit or remotely using the COM option (BCM ULP).

Micrologic			Type E	Types P, H
Characteristics			M2C	M2C/M6C
Minimum load	VAC	240	5	$100 \mathrm{~mA} / 24 \mathrm{~V}$
Breaking capacity (A)		380	3	5
p.f.: 0.7	VDC	24	100	3
		48	1.8	1.8
		125	0.4	1.5
		250	0.15	0.4

M6C: external 24 V DC power supply required (consumption 100 mA).

Remote operation Remote ON/OFF

Two solutions are available for remote operation of Masterpact devices:
■ a point-to-point solution
■ a bus solution with the COM communication option.

Note: an opening order always takes priority over a closing order.
If opening and closing orders occur simultaneously, the mechanism discharges without any movement of the main contacts. The circuit breaker remains in the open position (OFF).
In the event of maintained opening and closing orders, the standard mechanism provides an anti-pumping function by blocking the main contacts in open position.
Anti-pumping function. After fault tripping or intentional opening using the manual or electrical controls, the closing order must first be discontinued, then reactivated to close the circuit breaker.
When the automatic reset after fault trip (RAR) option is installed, to avoid pumping following a fault trip, the automatic control system must take into account the information supplied by the circuit breaker before issuing a new closing order or blocking the circuit breaker in the open position (information on the type of fault, e.g. overload, short-time fault, earth fault, earth leakage, short-circuit, etc.).

Note: MX communicating releases are of the impulse type only and cannot be used to lock a circuit breaker in OFF position. For locking in OFF position, use the remote tripping function (2nd MX or MN).
When MX or XF communicating releases are used, the third wire (C3, A3) must be connected even if the communication module is not installed. When the control voltage (C3-C1 or A3-A1) is applied to the MX or XF releases, it is necessary to wait 1.5 seconds before issuing an order. Consequently, it is advised to use standard MX or XF releases for applications such as source-changeover systems.

The remote ON / OFF function is used to remotely open and close the circuit breaker It is made up of:
■ an electric motor MCH equipped with a "springs charged" limit switch contact CH

- two voltage releases:
\square a closing release XF
\square an opening release MX.
Optionally, other functions may be added:
- a "ready to close" contact PF
- an electrical closing pushbutton BPFE
- remote RES following a fault.

A remote-operation function is generally combined with:

- device ON / OFF indication OF

■ "fault-trip" indication SDE.

Wiring diagram of a point-to-point remote ON / OFF function

Wiring diagram of a bus-type remote ON / OFF function

Functions and characteristics

Remote operation

Remote ON / OFF

Electric motor MCH for Masterpact NT.

Electric motor MCH for Masterpact NW.

$X F$ and $M X$ voltage releases.

[^2]
Electric motor MCH

The electric motor automatically charges and recharges the spring mechanism when the circuit breaker is closed. Instantaneous reclosing of the breaker is thus possible following opening. The spring-mechanism charging handle is used only as a backup if auxiliary power is absent.
The electric motor MCH is equipped as standard with a limit switch contact CH that signals the "charged" position of the mechanism (springs charged).

Characteristics	
Power supply VAC 50/60 Hz	$48 / 60-100 / 130-200 / 240-277-380 / 415-400 / 440-480$
	V DC

Voltage releases XF and MX

Their supply can be maintained or automatically disconnected.

Closing release XF

The XF release remotely closes the circuit breaker if the spring mechanism is charged.

Opening release MX

The MX release instantaneously opens the circuit breaker when energised. It locks the circuit breaker in OFF position if the order is maintained (except for MX "communicating" releases).
Note: whether the operating order is maintened or automatically disconnected (pulse-type), XF or MX "communicating" releases ("bus" solution with "COM" communication option) always have an impulse-type action (see diagram).

Characteristics	XF	MX
Power supply V AC 50/60 Hz	24-48-100/130-200/250-277-380/480	
V DC	12-24/30-48/60-100/130-200/250	
Operating threshold	0.85 to 1.1 Un	0.7 to 1.1 Un
Consumption (VA or W)	Hold: 4.5	Hold: 4.5
	Pick-up: 200 (200 ms)	Pick-up: 200 (200 ms)
Circuit-breaker response time at Un	$55 \mathrm{~ms} \pm 10$ (Masterpact NT)	$50 \mathrm{~ms} \pm 10$
	$70 \mathrm{~ms} \pm 10$ ($\mathrm{NW} \leqslant 4000 \mathrm{~A}$)	
	$80 \mathrm{~ms} \pm 10$ ($\mathrm{NW}>4000 \mathrm{~A}$)	

"Ready to close" contact PF

The "ready to close" position of the circuit breaker is indicated by a mechanical indicator and a PF changeover contact. This signal indicates that all the following are valid:
\square the circuit breaker is in the OFF position

- the spring mechanism is charged
- a maintained opening order is not present:
$\square \mathrm{MX}$ energised
\square fault trip
\square remote tripping second MX or MN
\square device not completely racked in
\square device locked in OFF position
\square device interlocked with a second device.

Characteristics				NT/NW
Maximum number				1
Breaking capacity (A)	Standard			Minimum load: $100 \mathrm{~mA} / 24 \mathrm{~V}$
p.f.: 0.3		VAC	240/380	5
AC12/DC12			480	5
			690	3
		V DC	24/48	3
			125	0.3
			250	0.15
	Low-level			Minimum load: $2 \mathrm{~mA} / 15 \mathrm{~V}$
		V AC	24/48	3
			240	3
			380	3
		VDC	24/48	3
			125	0.3
			250	0.15

Functions and characteristics

Remote operation

Remote tripping

MX or MN voltage release.

This function opens the circuit breaker via an electrical order. It is made up of

- a shunt release second MX
- or an undervoltage release MN
- or a delayed undervoltage release MNR: MN + delay unit.

These releases ($2^{\text {nd }} \mathrm{MX}$ or MN) cannot be operated by the communication bus. The delay unit, installed outside the circuit breaker, may be disabled by an emergency OFF button to obtain instantaneous opening of the circuit breaker.
Wiring diagram for the remote-tripping function

Voltage releases second MX
When energised, the MX voltage release instantaneously opens the circuit breaker. A continuous supply of power to the second MX locks the circuit breaker in the OFF position.

Characteristics		
Power supply	VAC 50/60Hz	$24-48-100 / 130-200 / 250-277-380 / 480$
	V DC	$12-24 / 30-48 / 60-100 / 130-200 / 250$
Operating threshold	0.7 to 1.1 Un	
Permanent locking function	0.85 to 1.1 Un	
Consumption (VA or W)	Pick-up: $200(80 \mathrm{~ms})$	
Circuit-breaker response time at Un	$50 \mathrm{~ms} \pm 10$	Hold: 4.5

Instantaneous voltage releases MN

The MN release instantaneously opens the circuit breaker when its supply voltage drops to a value between 35% and 70% of its rated voltage. If there is no supply on the release, it is impossible to close the circuit breaker, either manually or electrically. Any attempt to close the circuit breaker has no effect on the main contacts. Circuitbreaker closing is enabled again when the supply voltage of the release returns to 85 \% of its rated value.

Characteristics			
Power supply	V AC 50/60 Hz	$24-48-100 / 130-200 / 250-380 / 480$	
	V DC	$24 / 30-48 / 60-100 / 130-200 / 250$	
Operating threshold	Opening	0.35 to 0.7 Un	
	Closing	0.85 Un	Hold: 4.5
Consumption (VA or W)	Pick-up: $200(200 \mathrm{~ms})$	Hold: 4.5	
MN consumption	Pick-up: $200(200 \mathrm{~ms})$		
with delay unit (VA or W)			
Circuit-breaker response time at Un	$40 \mathrm{~ms} \pm 5$ for NT		

MN delay units

To eliminate circuit-breaker nuisance tripping during short voltage dips, operation of the MN release can be delayed. This function is achieved by adding an external delay unit in the MN voltage-release circuit. Two versions are available, adjustable and non-adjustable.

Characteristics			
Power supply	Non-adjustable	$100 / 130-200 / 250$	
V AC 50-60 Hz /DC	Adjustable	$48 / 60-100 / 130-200 / 250-380 / 480$	
Operating threshold	Opening	0.35 to 0.7 Un	
	Closing	0.85 Un	
	Pick-up: $200(200 \mathrm{~ms})$	Hold: 4.5	
Delay unit consumption	Non-adjustable	0.25 s	
Circuit-breaker response time at Un	Ndjustable	$0.5 \mathrm{~s}-0.9 \mathrm{~s}-1.5 \mathrm{~s}-3 \mathrm{~s}$	

 səэ!ィəр ұпомедр pue pəx!」

Accessories

Auxiliary terminal shield CB

Optional equipment mounted on the chassis, the shield prevents access to the terminal block of the electrical auxiliaries.

Operation counter CDM

The operation counter sums the number of operating cycles and is visible on the front panel. It is compatible with manual and electrical control functions.
This option is compulsory for all the source-changeover systems.

Escutcheon CDP with blanking plate.

[^3]
Escutcheon CDP

Optional equipment mounted on the door of the cubicle, the escutcheon increases the degree of protection to IP 40 (circuit breaker installed free standing: IP30) . It is available in fixed and drawout versions.

Blanking plate OP for escutcheon

Used with the escutcheon, this option closes off the door cut-out of a cubicle not yet equipped with a device. It may be used with the escutcheon for both fixed and drawout devices.

Transparent cover CCP for escutcheon

Optional equipment mounted on the escutcheon, the cover is hinged and secured by a screw. It increases the degree of protection to IP54, IK10. It adapts to drawout devices.

Additional
characteristics

Tripping curves

IDMTL curve (Micrologic P and H)

Schneider施耐德電機授權經銷商
總公司：台北市内湖區行愛路68號6樓東 技 企 業 股 份 有 限 公 司電 話：（02）8791－8588

中辦處：（04）2296－9388
傳 真：（02）8791－9588
高辦處：（07）227－2133
E－mail：toyotech＠ms37．hinet．net

Schneider Electric Industries SAS

35，rue Joseph Monier
CS 30323
F－92506 Rueil Malmaison Cedex
RCS Nanterre 954503439
Capital social $896313776 €$
www．schneider－electric．com

As standards，specifications and designs change from time to time，please ask for confirmation of the information given in this publication．

This document has been printed on ecological paper
Design：Schneider Electric
Photos：Schneider Electric
Printed：Altavia Connexion－made in France

[^0]: 1 Long-time current setting and tripping delay.
 2 Overload signal (LED).
 3 Short-time pick-up and tripping delay.
 4 Instantaneous pick-up.
 5 Earth-leakage or earth-fault pick-up and tripping delay.
 6 Earth-leakage or earth-fault test button.
 7 Long-time rating plug screw.
 8 Test connector.
 9 Lamp + battery test and indications reset.
 10 Indication of tripping cause
 11 High-resolution screen.
 12 Measurement display.
 13 Maintenance indicators.
 14 Protection settings.
 15 Navigation buttons.
 16 Hole for settings lockout pin on cover.

[^1]: Voltage-based protection functions are connected to AC power via a voltage measurement input built into the circuit breaker.

[^2]: "Ready to close" contacts PF

[^3]: Transparent cover CCP for escutcheon.

