VAMP 125

Arc Flash Protection Unit

Publication version: V125/en M/A001

User manual

Table of Contents

1	Gen	eral	5
	1.1 1.2 1.3 1.4 1.5	Legal notice Safety information EU directive compliance Periodical testing Purpose 1.5.1 Related documents Abbreviations	5 7 7 8
2	Intro	duction	10
	2.1	VAMP 125	10
	2.2	Unit features	
	2.3	DIP switch settings on unit	11
	2.4	Connecting the supply voltage	
	2.5	Disconnecting the supply voltage	13
3	Fund	ctions	14
	3.1	Arc flash protection, general principle	14
	3.2	Self-supervision	
	3.3	Binary inputs and outputs	
	3.4	Output relays	
	3.5	HMI functions and indications	16
4	4 Application		18
5	Con	nections	20
	5.1	X1 connector	21
	5.2	X2 connector	
	5.3	X5 connector	22
6	Arc	flash sensor	23
	6.1	VA 1 DA	23
	6.2	Connecting the IED	
	6.3	Sensitivity	25
7	Prev	rentive maintenance	26
	7.1	Maintenance	
	7.2	Cleaning of hardware	
	7.3	Sensor condition and positioning check	
	7.4 7.5	System status messages	
	7.5	Spare parts	21
8	Tech	nnical data	28
	ឧ 1	VAMP 125	28

	8.2	Arc flash sensor	33
9	Mou	nting	34
10	Orde	r information	37

1 General

1.1 Legal notice

Copyright

2017 Schneider Electric. All rights reserved.

Disclaimer

No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this document. This document is not intended as an instruction manual for untrained persons. This document gives instructions on device installation, commissioning and operation. However, the manual cannot cover all conceivable circumstances or include detailed information on all topics. In the event of questions or specific problems, do not take any action without proper authorization. Contact Schneider Electric and request the necessary information.

Contact information

35 rue Joseph Monier

92506 Rueil-Malmaison

FRANCE

Phone: +33 (0) 1 41 29 70 00

Fax: +33 (0) 1 41 29 71 00

www.schneider-electric.com

1.2 Safety information

Important Information

Read these instructions carefully and look at the equipment to become familiar with the device before trying to install, operate, service or maintain it. The following special messages may appear throughout this bulletin or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.

The addition of either symbol to a "Danger" or "Warning" safety label indicates that an electrical hazard exists which will result in personal injury if the instructions are not followed.

This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

A DANGER

DANGER indicates an imminently hazardous situation which, if not avoided, **will result in** death or serious injury.

AWARNING

WARNING indicates a potentially hazardous situation which, if not avoided, **can result in** death or serious injury.

ACAUTION

CAUTION indicates a potentially hazardous situation which, if not avoided, **can result in** minor or moderate injury.

NOTICE

NOTICE is used to address practices not related to physical injury.

User qualification

Electrical equipment should be installed, operated, serviced, and maintained only by trained and qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material. A qualified person is one who has skills and knowledge related to the construction, installation, and operation of electrical equipment and has received safety training to recognize and avoid the hazards involved.

Password protection

Use the IED's password protection feature to protect untrained persons from interacting with this device.

Settings protection

The IED's settings protection is intended for detecting accidental settings change. It automatically alarms, if the system is not installed after the DIP switch changes.

AWARNING

WORKING ON ENERGIZED EQUIPMENT

Do not choose lower Personal Protection Equipment while working on energized equipment.

Failure to follow these instructions can result in death or serious injury.

1.3 EU directive compliance

EMC compliance

(€ 2014/30/EU

Compliance with the European Commission's EMC Directive. Product Specific Standards were used to establish conformity:

EN 60255-26: 2013

Product safety

(€ 2014/35/EU

Compliance with the European Commission's Low Voltage Directive. Compliance is demonstrated by reference to generic safety standards:

EN60255-27:2014

1.4 Periodical testing

The protection IED, cabling and arc sensors must periodically be tested according to the end-user's safety instructions, national safety instructions or law. The manufacturer recommends that functional testing is carried out at the minimum every five (5) years.

It is proposed that the periodic testing is conducted with a secondary injection principle for those protection stages which are used in the IED and its related units where current measuremet is used.

1 General 1.5 Purpose

Purpose 1.5

NOTE: For applications in the US, Canada and Mexico, use specific documents reviewed in line with the requirements of the relevant regulatory authorities. Please contact our local Schneider Electric office for assistance.

> This document contains instructions on the installation, commissioning and operation of VAMP 125. This guide also contains an application example of configuring an arc flash protection system.

> This document is intended for persons who are experts on electrical power engineering, and it covers the device models as described by the ordering code in Chapter 10 Order information.

1.5.1 Related documents

Document	Identification*)
VAMP 125 Setup and Wiring Instructions	V125/EN AB/xxxx

^{*)} xxxx = revision number

Download the latest manual at www.schneider-electric.com/vamp-protection or m.vamp.fi.

Abbreviations 1.6

ac	Alternating current	
ANSI	American National Standards Institute. A standardization organisation.	
AWG	American wire gauge	
СВ	Circuit breaker	
СТ	Current transformer	
dc	Direct current	
DI	Digital input	
DO	Digital output, output relay	
FPGA	Field-programmable gate array	
HSO	High speed output	
НМІ	Human-machine interface	
IED	Intelligent electronic device, refers to VAMP 125 in this document	
LED	Light-emitting diode	
MT	Master trip	
SF	IED status inoperative	
SPST	Sigle pole single throw	
VAMP 221	Central unit for VAMP 221 arc flash protection	
VAMP 321	Central unit for VAMP 321 arc flash protection	

1 General 1.6 Abbreviations

VAM 4C	Current I/O unit for VAMP 221 and VAMP 321 arc flash protection	
--------	---	--

2 Introduction

2.1 VAMP 125

Figure 2.1: Arc protection unit VAMP 125

The VAMP 125 arc flash protection unit is a versatile and independently operating device for bay based protection.

VAMP 125 has a fixed one type design, and it is optimized for use in arc protection as a stand-alone device or as part of a system. It can be used in various arc protection applications in low or medium voltage power distribution systems.

- External input for overcurrent measurement via the I> I_N input
- Event memory, LED indication memory in case of mains loss
- Operation on simultaneous current and light or on light only mode (I> & L>, or L>)
- Typically a 7 ms operation time with a mechanical output relay: with HSO the operation time is typically 1 ms in the light only mode
- Two programmable operation zones
- Full system self-supervision
- Up to two normally-open trip contacts for fast arc flash detection: T1 (HSO) and T2 (SPST)
- One change-over signal contact: SF
- LED indications of status, fault and trip indications
- Binary input/output (BI/O) bus for light and overcurrent information and master trip

2 Introduction 2.2 Unit features

2.2 Unit features

VAMP 125 is a state of the art arc protection unit for electrical power distribution systems. By using VAMP 125 in switchgears, considerable safety improvements are obtained in the form of minimized injury and damage in case of an arc fault. VAMP 125 is a stand alone device, which provides a compact solution when the application does not require overcurrent measurement or when the overcurrent information is available from the incomer protection relay or any other arc protection unit (VAMP 221, 321 / VAM 4C). It is possible to connect four arc sensors of the VA1DA-, VA1EH- or VA2DV- type to the VAMP 125 unit.

2.3 DIP switch settings on unit

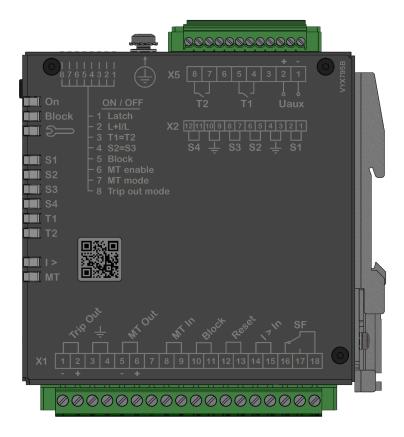


Figure 2.2: VAMP 125 dipswitch operations and sensor connection

The unit is configured using dipswitches which are located on top of the device.

NOTE: If any settings are changed, the device indicates it via the service output and the "₅⇒" LED is lit.

Dipswitches 1 – 8:

SW No.	Description
1 Latch	The Latch switch enables latching of the trip relays. If set to the 'ON' position, the latching function is activated. If set to the 'OFF' position, the output relays will follow the state of the sensors and minimally 20 ms output control pulse is generated.
2 L+I/L	The L+I/L switch selects the operation mode. If set to the 'ON' position, the unit operates in the L+I mode (requires both I> input activation and light + external I> I_N signal). If set to the 'OFF' position, the unit operates in the L> mode (light only mode).
3 T1=T2	The T1=T2 mode is for setting the system selectivity. If set to the 'OFF' position, sensors nr. 1 and 2 will trip relay T1. Accordingly, sensors nr. 3 and 4 will trip relay T2. If set to the 'ON' position, all four sensor channels will activate both trip outputs.
4 S2=S3	If the configuration switch for sensor inputs 2 and 3 is in the 'ON' position, the activation of sensor 2 or 3 results in a common trip of both T1 and T2. If the switch is in the 'OFF' position, sensor 2 is linked to T1, sensor 3 is linked to T2 and both will individually trip their dedicated trip relays.
5 Block	The Block switch enables blocking function to unit outputs.
6 MT enable	The MT enable switch enables the master trip function.
7 MT mode	If the configuration switch is set to the 'OFF' position, the MT output follows T1. If the configuration switch is set to the 'ON' position, the MT output follows T1 and T2.
	Note! Operation applies also to the L+I/L function.
8 Trip output mode	If the configuration switch is set to the 'OFF' position, the Trip out follows the state of T1. If the switch is set to the 'ON' position, the Trip out follows the state of T2.

2.4 Connecting the supply voltage

NOTE: Do not connect the supply voltage before the device connections and configuration are done. If the settings of the unit need to be changed, disconnect the supply voltage before configuring the device(s).

- Ensure the device connections, protective grounding and unit configurations are in order.
- Connect the auxiliary supply voltage to the IED's terminal block.

A DANGER

HAZARD OF ELECTRICAL SHOCK

Always connect the protective grounding before connecting the power supply.

Failure to follow these instructions will result in death or serious injury.

2.5 Disconnecting the supply voltage

The auxiliary supply power must be disconnected from the IED if the following service actions are required:

- Replacement, add-on or removal of unit, cabling or sensors
- Changing of unit settings

3 Functions

3.1 Arc flash protection, general principle

The arc flash protection contains two protection zones, which may be used to trip for example the incomer and outgoing circuit breakers. Arc protection zones are activated with external overcurrent status and light signals (or light signal alone). The allocation of different light signals to arc zones is defined in the sensor channel mapping of the unit.

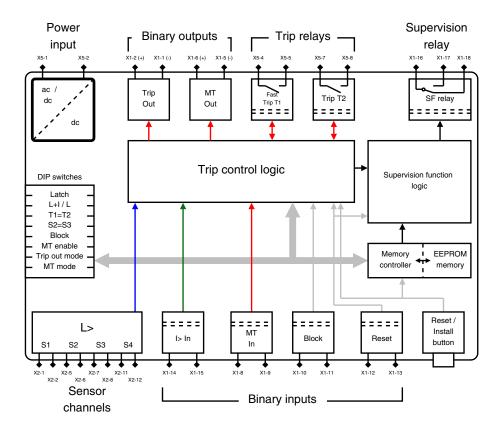


Figure 3.1: VAMP 125 block diagram

3.2 Self-supervision

The electronics and operation of the VAMP 125 unit are supervised by means of a separate self-supervision logic. The arc flash sensors are also self-supervised. In case the self-supervision detects a permanent fault within the VAMP 125 unit or the arc sensors connected, the self-supervision output and system status indication LED are activated.

3.3 Binary inputs and outputs

Information from the arc protection function can be transmitted and/or received through binary inputs (BI) and outputs (BO). The rated voltage of these signals is 24 V dc when active. The input signal voltage range is 18-250 V dc.

Binary inputs

The binary inputs 'BI' (MT In, Block, Reset or I> I_N) can be used to receive the master trip, Blocking, Reset or Current indication from another IED to build selective arc protection scheme(s). BI is a dry type input for a 18 – 250 V dc signal. The function of BI signals is configured with the DIP switch.

Binary output

The binary outputs 'BO' (Trip Out or MT Out) can be used to send the trip indication/information signal to another IED's binary input to build selective arc protection systems. BO is an internally driven (wetted) 24 Vdc signal. The function of BO signals is configured with the DIP switch.

3.4 Output relays

The output relays are also called digital outputs. Trip contacts can be controlled only by the corresponding arc flash sensors. The activated contact is indicated by the T1 and T2 LEDs.

An output relay can be configured as latched or non-latched using DIP switch 1. Latched relay contacts can be set free by pressing the IED's "Reset / Install" key.

The difference between the trip contacts and signal contacts is the DC breaking capacity. The contacts are single pole single throw (SPST) normal open type (NO), except for the signal relay SF which has a change-over contact single pole double throw (SPDT).

3.5 HMI functions and indications

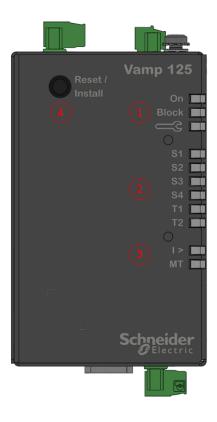


Figure 3.2: VAMP 125 dipswitch operations and sensor connection

1. Operating status indication lights

- On: Green, steady when the device is powered
- Block: Yellow, lit when the block is active, either from DIP or Block input
- Tool: Red, steady when the device is in the error state or blocked

2. Sensor and trip output indications

- S1: Yellow, steady when sensor 1 is activated, flashing in the unhealthy state
- S2: Yellow, steady when sensor 2 is activated, flashing in the unhealthy state
- S3: Yellow, steady when sensor 3 is activated, flashing in the unhealthy state
- S4: Yellow, steady when sensor 4 is activated, flashing in the unhealthy state
- T1: Red, steady when trip 1 is activated, flashing in the unhealthy state
- T2: Red, steady when trip 2 is activated, flashing in the unhealthy state

3. Binary input indications

- I>: Red, steady when I> input is energized
- MT: Red, steady when external master trip is received from MT In

4. Reset / Install

- Push button on the front: "Reset / Install"
 - 0.5 s press to, reset and clear indications / latch
 - 5 s to press to, install sensors
- While pressing "Install", the device will flash all LEDs at the end of the installation routine to perform the LED function test.

4 Application

Every switchgear or assembly compartment is equipped with an arc flash point sensor. Up to four sensors can be connected to the unit. The trip relays are electromechanical and hybrid type of outputs. Relays can be connected directly to control the circuit breakers.

VAMP 125 is an arc flash protection relay for small MV and LV power distribution applications used in power generation, industry and utilities where the light only operation mode with full selectivity is required.

If overcurrent criteria are required simultaneously with light activation, a binary current signal has to be connected to X1-14/15. This I> I_N signal can for example be taken from the VAM 4C or VAMP 221, 321 units.

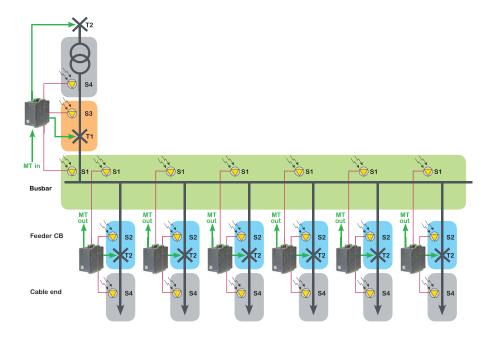


Figure 4.1: One main application on MV switchgear

Fault in cable end

S4 sensor activates trip contact "T2". Busbar remains operational.

Fault in busbar and feeder CB

- S1 sensor in busbar or S2 sensor in feeder CB activates the master trip.
- MT Out is connected to the incomer VAMP 125 unit.
- When the VAMP 125 unit located in the incomer receives MT to input, the incomer unit activates the trip contact "T1".

Fault in incomer CB or cable end

Sensors S3 and S4 activate contact "T2".

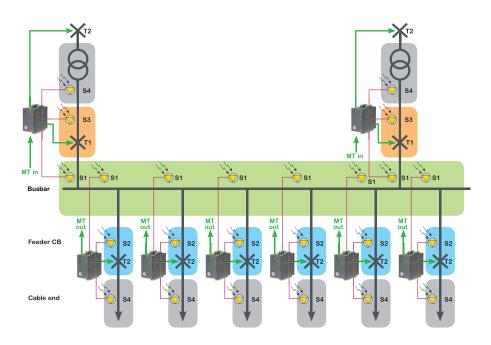


Figure 4.2: Two main application on MV switchgear

DIP switch settings for One main and Two main applications. These settings are identical for the incomer and feeder VAMP 125 IED.

	ON	OFF
Latch	Х	
L+I/L		Х
T1=T2		Х
S2=S3		Х
Block		Х
MT enable	Х	
MT mode		Х
Trip out mode		Х

Please see "VAMP 125, Setup and Wiring Instructions" for more application examples.

5 Connections

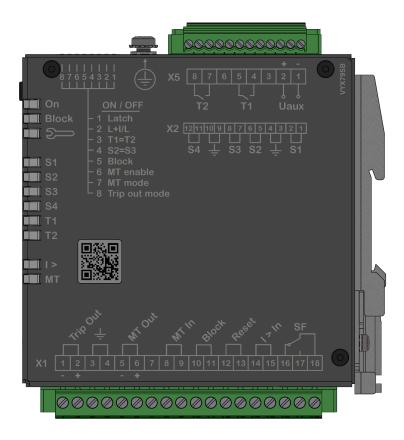


Figure 5.1: VAMP 125 connections

The VAMP 125 unit comprises two independent arc protection zones. Both zones have their own trip relay, trip 1 and trip 2. Trip 1 is controlled by sensor inputs 1 and 2. Trip 2 is controlled by sensors 3 and 4.

Trip Out is activated if either or both the trip relays trip.

- If the Trip out mode switch is in the "OFF" position, the output follows the state of T1.
- If the Trip out mode switch is in the "ON" position, the output follows the state of T2.

If the "T1=T2" dip switch is in the "ON" position, both trip outputs will work in parallel for any sensor activation.

If the "S2=S3" dip switch is in the "ON" position, activation of sensor 2 or 3 will cause both T1 and T2 to trip. This is for example used for CB compartment supervision where two zones overlap each other.

If the overcurrent criteria are required simultaneously with light activation, a binary current signal has to be connected to X1-14/15. This I> signal can e.g. be taken from VAM 4C or VAMP 221or 321

5 Connections 5.1 X1 connector

units. External reset is possible by energizing the Reset input in X1-12/13 by auxiliary voltage.

The auxiliary voltage is connected to X5-1 and X5-2. VAMP 125 has a wide power supply range.

A DANGER

HAZARD OF ELECTRICAL SHOCK

Always connect the protective grounding before connecting the power supply.

Failure to follow these instructions will result in death or serious injury.

5.1 X1 connector

Table 5.1: Type: Phoenix contact MSTB 2.5 - 5.06

Pin No.	Symbol	Description
1	Trip Out	Trip Out, negative terminal
2	Trip Out	Trip Out, positive terminal, +24 V dc
3	GND	Binary output GND
4	GND	Binary output GND
5	MT Out	MT Out, negative terminal
6	MT Out	MT Out, positive terminal, +24 V dc
7	NC	No connection
8	MT In	External master trip input
9	MT In	External master trip input
10	Block	External block input
11	Block	External block input
12	Reset	External reset input
13	Reset	External reset input
14	l> In	External current input
15	l> In	External current input
16	SF COMMON	Service status output, common
17	SF NO	Service status output, normal open
18	SF NC	Service status output, normal close

NOTE: Binary inputs are polarity free which means that the user can freely choose "-" and "+" terminals for each binary input.

5.2 X2 connector 5 Connections

5.2 X2 connector

Table 5.2: Type: Phoenix contact MC 1.5 – 3.5

Pin No.	Symbol	Description
1	S1	Arc sensor channel 1, positive terminal
2	S1	Arc sensor channel 1, negative terminal
3	GND	Arc sensor channel 1 Ground
4	GND	Arc sensor channel 2 Ground
5	S2	Arc sensor channel 2, positive terminal
6	S2	Arc sensor channel 2, negative terminal
7	S3	Arc sensor channel 3, positive terminal
8	S3	Arc sensor channel 3, negative terminal
9	GND	Arc sensor channel 3 Ground
10	GND	Arc sensor channel 4 Ground
11	S4	Arc sensor channel 4, positive terminal
12	S4	Arc sensor channel 4, negative terminal

5.3 X5 connector

Table 5.3: Type: Phoenix contact MSTB 2.5 – 5.06

Pin No.	Symbol	Description
1	L/-/~	Supply voltage, positive terminal
2	N / + / ~	Supply voltage, negative terminal
3	NC	No connection
4	T1	Trip relay 1, HSO type
5	T1	Trip relay 1, HSO type
6	NC	No connection
7	T2	Trip relay 2, electromechanical type
8	T2	Trip relay 2, electromechanical type

6 Arc flash sensor

VA 1 xx is a point type arc flash sensor. Arc flash light is transformed to a current signal in the sensor.

- Standard 8000 10000 lux visible light sensitivity
- Wide area arc flash detection
- Typically <1 ms detection time
- Standard cable length of 6 m or 20 m (cut to length on site)
- Easy to install (2-wired non-polarity sensitive connection)
- Can be mounted on switchgear surface, in customer drilled holes in switchgear or on VYX001 Z shape or VYX002 L shape mounting plates available from VAMP, or locally fabricated from supplied drawings

The sensor is used by an arc flash protection device (IED) or system to detect the light coming from the arc flash incident.

6.1 VA 1 DA

The arc sensor VA 1 DA is activated by strong light. The sensor transforms the light information into the current signal, which is used by the IED to detect arc flash light.

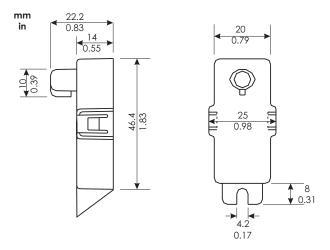


Figure 6.1: VA 1 DA dimensions

You can install the arc sensor onto the switchgear wall from the outside. Press the active part of the sensor through the 10 mm hole in the wall and fix it using a 4 mm screw.

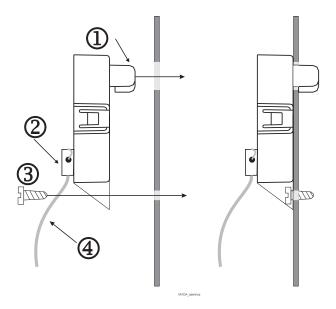


Figure 6.2: VA 1 DA mounting

- 1 Active part of the sensor
- 2 Cable clamp
- 3 Fastening screw 4 x 15 mm
- 4 Sensor cable

6.2 Connecting the IED

The sensors are delivered with 6 or 20 m cables. After mounting the sensors, connect them to the IED as follows:

- Draw the wire to the nearest IED using the shortest route possible and cut it to a suitable length.
- Connect the arc sensors to the screw terminals. The polarity of the arc sensor cables is not critical.
- Connect the cable shield to the corresponding connector on X2 terminal when using shielded cable on sensor(s).

NOTE: Do not splice or extend pre-made/supplied cables with any type of wires or cables.

6 Arc flash sensor 6.3 Sensitivity

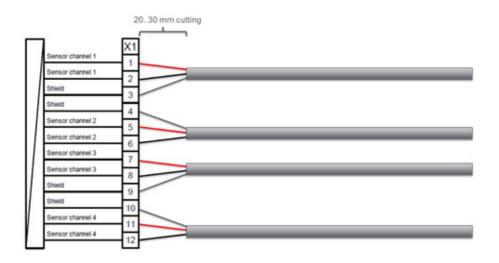


Figure 6.3: Cable landing to VAMP 125 X1 connector

6.3 Sensitivity

NOTE: The sensor must not be exposed to direct sunlight or other strong light sources. Do not mount the sensor directly under a light source.

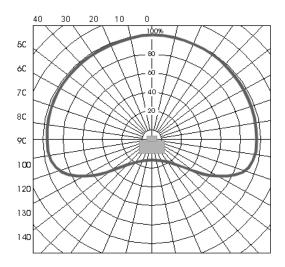


Figure 6.4: Sensitivity of the arc sensor VA 1 DA

7 Preventive maintenance

The IED requires maintenance to ensure that it works according to the specification. Keep record of the maintenance actions performed for the system. The maintenance can include, but is not limited to, the following actions.

7.1 Maintenance

The VAMP arc products, sensors and cabling shall be visually checked when the switchgear is de-energized. During such inspection pay attention to:

- Possible dirty arc sensors
- Loose wire connections
- Damaged wiring
- Indicator lights (unit start-up)
- Other mechanical connections.

Visual inspection shall be carried out at the minimum once every three (3) years.

A CAUTION

EQUIPMENT OPERATION HAZARD

Carry out periodical system testing as per manufacturer's recommendation or in case the protection system scheme has been changed.

Failure to follow these instructions can result in injury or equipment damage.

7.2 Cleaning of hardware

Special attention must be paid to ensure that the IED, its extension units and sensors do not become dirty. In case cleaning is required, wipe out dirt from the units.

Use a dry cleaning cloth or equivalent together with mild soapy water to clean any residues from the sensor.

A CAUTION

EQUIPMENT OPERATION HAZARD

Do not use any type of solvents or gasoline to clean the IED, sensors or cables.

Failure to follow these instructions can result in injury or equipment damage.

7.3 Sensor condition and positioning check

After commissioning, sensor replacement, modification procedure, cleaning and periodical testing always check that the sensor positioning remains as it was originally designed.

7.4 System status messages

In case the IED's self-checking detects any unintended system status, it provides an alarm by activating the Service LED (�=) and indication status notification on the SF output. Should this happen, contact your local office for further guidance.

7.5 Spare parts

Use the entire unit as a spare for the device to be replaced.

8 Technical data

8.1 VAMP 125

Table 8.1: Auxiliary power supply

U _{AUX}	24 – 240 (-20% +10%) V ac/dc
Power consumption	8 W

Table 8.2: Hybrid output, T1

Number of contacts	1, NO
Rated voltage	24 – 240 V ac/dc
Continuous carry	5 A
Minimum making current	-
Typical operation time (light only)	≤1 ms
Make and carry, 0.5 s	30 A
Make and carry, 3 s	15 A
Breaking capacity, ac	2 000 VA
Breaking capacity, dc (L/R = 40ms)	
at 48 V dc:	5 A
at 110 V dc:	3 A
at 220 V dc:	1 A
Contact material	AgNi 90/10
Terminal block:	Wire dimension:
- MSTB2.5 - 5.08	Maximum 2.5 mm ² (13 – 14 AWG)
	Minimum 1.5 mm ² (15 – 16 AWG)

8 Technical data 8.1 VAMP 125

Table 8.3: Trip contact, T2

Number of contacts	1, NO	
Rated voltage	250 V ac/dc	
Continuous carry	5 A	
Minimum making current	100 mA at 24 Vdc	
Typical operation time (light only)	≤8 ms	
Make and carry, 0.5 s	30 A	
Make and carry, 3 s	15 A	
Breaking capacity, ac	2 000 VA	
Breaking capacity, dc (L/R = 40ms)		
at 48 V dc:	1.15 A	
at 110 V dc:	0.5 A	
at 220 V dc:	0.25 A	
Contact material	AgNi 90/10	
Terminal block:	Wire dimension:	
- MSTB2.5 - 5.08	Maximum 2.5 mm ² (13 – 14 AWG)	
	Minimum 1.5 mm ² (15 – 16 AWG)	

Table 8.4: Self-supervision contact; SF

Tuble 0.4. Gen-Supervision contact, or		
Number of contacts:	2, NC/NO	
Rated voltage	250 V ac/dc	
Continuous carry	5 A	
Minimum making current	100 mA at 24 V ac/dc	
Make and carry, 0.5 s	30 A	
Make and carry, 3 s	15 A	
Breaking capacity, ac	2 000 VA	
Breaking capacity, dc (L/R = 40ms)		
at 48 V dc:	1.15 A	
at 110 V dc:	0.5 A	
at 220 V dc:	0.25 A	
Contact material	AgNi 90 / 10	
Terminal block	Wire dimension	
- MSTB2.5 - 5.08	Maximum 2.5 mm ² (13 – 14 AWG)	
	Minimum 1.5 mm ² (15 – 16 AWG)	

8.1 VAMP 125 8 Technical data

Table 8.5: Binary outputs; Trip Out, MT Out

Number of outputs	2
Rated output voltage	+24 V dc (max +32 V dc unloaded)
Rated output current	20 mA
Terminal block:	Wire dimension:
- MSTB2.5 - 5.08	Maximum 2.5 mm ² (13 – 14 AWG)
	Minimum 1.5 mm ² (15 – 16 AWG)
Connection cable	Twisted pair, with shield. Shield shall be grounded to the appropiarty connector.

Table 8.6: Binary inputs; MT In, Block, Reset, $I > I_N$

Number of inputs	4
Voltage withstand	250 V ac/dc
Nominal operation voltage	24 – 240 V ac/dc (max. 250 V ac/dc)
Typical switching threshold	12 V dc ±5 %
Current drain	approx. 3 mA
Terminal block:	Wire dimension:
- MSTB2.5 - 5.08	Maximum 2.5 mm ² (13 – 14 AWG)
	Minimum 1.5 mm ² (15 – 16 AWG)
	Twisted pair, with shield. Shield shall be grounded to the appropiarty connector.

Table 8.7: Arc sensor inputs; S1 – S4

Number of inputs	4
Supply to sensors	8 V dc
Grounding	4 pcs ground termination on connector
Terminal block:	Wire dimension:
- MC 1.5 - 3.5	Maximum 1.5 mm ² (15 – 16 AWG)
	Minimum 0.14 mm ² (25 – 26 AWG)
Connection cable	Twisted pair, with shield. Shield shall be grounded to the appropiarty connector.

8 Technical data 8.1 VAMP 125

Table 8.8: Disturbance tests

Test	Standard & Test class / level	Test value
Emission	IEC/EN 60255-26 (ed3)	
- Conducted	EN 55022, Class A & CISPR 22	0.15 – 80 MHz
- Emitted	EN 55011, Class A / IEC 60255-25 / CISPR 11	30 – 1000 MHz
	EN 55011, Class A & CISPR 11	
Immunity	IEC/EN 60255-26 (ed3) Zone A	
- 1 Mhz damped oscillatory wave	IEC/EN 61000-4-18	±2.5 kVp CM, ±2.5 kVp DM
- Static discharge (ESD)	IEC/EN 61000-4-2 Level 4	±8 kV contact, ±15 kV air
- Emitted HF field	IEC/EN 61000-4-3 Level 3	80 – 2700 MHz, 10 V/m
- Fast transients (EFT)	IEC/EN 61000-4-4 Level 4	±4 kV, 5/50 ns, 5 kHz
- Surge	IEC/EN 61000-4-5 Level 3	±4 kV, 1.2/50 μs, CM
		±2 kV, 1.2/50 µs, DM
- Conducted HF field	IEC/EN 61000-4-6 Level 3	0.15 – 80 MHz, 10 Vemf
- Power-frequency magnetic field	IEC/EN 61000-4-8	300 A/m (continuous), 1000 A/m 1 - 3 s
- Pulse magnetic field	IEC/EN 61000-4-9 Level 5	1000 A/m, 1.2/50 μs
- ac and dc voltage dips	IEC/EN 61000-4-29, IEC/EN 61000-4-11	0% of rated voltage
		ac: 5 cycles
		• dc: 100 ms
		40% of rated voltage
		ac: 10 cycles
		• dc: 200 ms
		70% of rated voltage
		ac: 25 cycles
		• dc: 500 ms
- ac and dc voltage interruptions	IEC/EN 61000-4-29, IEC/EN 61000-4-11	100% interruption
		ac: 250 cycles
		• dc: 5 s
- Voltage alternative component	IEC/EN 61000-4-17	15% of operating voltage (dc) / 10 min

Table 8.9: Electrical safety tests

Test	Standard & Test class / level	Test value
- Impulse voltage withstand	IEC/EN 60255-27	5 kV, 1.2/50 ms, 0.5 J
- Dielectric test	IEC/EN 60255-27	2 kV, 50 Hz
- Insulation resistance	IEC/EN 60255-27	
- Protective bonding resistance	IEC/EN 60255-27	
- Power supply burden	IEC 60255-1	

8.1 VAMP 125 8 Technical data

Table 8.10: Mechanical tests

Test	Standard & Test class / level	Test value
Device in operation	,	
- Vibrations	IEC 60255-21-1, Class II / IEC 60068-2-6, Fc	1 Gn, 10 – 150 HZ
- Shocks	IEC 60255-21-2, Class II / IEC 60068-2-27, Ea	10 Gn / 11 ms
- Seismic	IEC 60255-21-3 Method A, Class II	2G horizontal / 1G vertical , 1 – 35 Hz
Device de-energized		
- Vibrations	IEC 60255-21-1, Class II / IEC 60068-2-6, Fc	2 Gn, 10 – 150 HZ
- Shocks	IEC 60255-21-2, Class II / IEC 60068-2-27, Ea	30 Gn / 11 ms
	Panel mounting	
	IEC 60255-21-2, Class I / IEC 60068-2-27, Ea	15 Gn / 11 ms
	DIN rail mounting	
- Bump	IEC 60255-21-2, Class II / IEC 60068-2-27, Ea	20 Gn / 16 ms
	Panel mounting	
	IEC 60255-21-2, Class I / IEC 60068-2-27, Ea	10 Gn / 16 ms
	DIN rail mounting	

Table 8.11: Environmental tests

Test	Standard & Test class / level	Test value
Device in operation	'	,
- Dry heat	EN / IEC 60068-2-2, Bd	70°C (158°F)
- Cold	EN / IEC 60068-2-1, Ad	-40°C (-40°F)
- Damp heat, cyclic	EN / IEC 60068-2-30, Db	 From 25°C (77°F) to 55°C (131°F) From 93% RH to 98% RH Testing duration: 6 days
- Damp heat, static	EN / IEC 60068-2-78, Cab	 Testing duration: 6 days 40°C (104°F) 93% RH Testing duration: 10 days
Change of temperature	IEC / EN 60068-2-14, Nb	Lower Temp -40°CUpper Temp 70°C5 Cycles
Device in storage		
- Dry heat	EN / IEC 60068-2-2, Bb	80°C (176°F)
- Cold	EN / IEC 60068-2-1, Ab	-40°C (-40°F)

Table 8.12: Environmental conditions

Ambient temperature, in-service	-40 – 65°C (-40 – 149°F)
Ambient temperature, storage	-40 – 80°C (-40 – 176°F)
Relative air humidity	<95%
Maximum operating altitude	2000 m (6561.68 ft)

8 Technical data 8.2 Arc flash sensor

Table 8.13: Casing

Degree of protection (IEC 60529)	IP20
Dimensions (W x H x D)	70 x 135 x 123 mm / 2.76 x 5.31 x 4.84 in
Weight	0.9 kg (1.987 lb)

8.2 Arc flash sensor

П	8, 12 or 15 V dc (from the IED)
U_{AUX}	8, 12 or 15 v dc (nom the IED)
Current consumption	<2 – 4 mA (in normal mode)
	<18 – 29 mA (activated)
Housing class (IEC 60529)	IP20
Dimensions (W x H x D)	25 x 55 x 14 mm / 0.98 x 2.17 x 0.55 in
Material	Plastic
Weight (with 6 m / 236.22 in cable)	0.3 kg (0.662 lb)
Cable length	6 m (236.22 in) or 20 m (787.40 in)
Environment	Pollution Degree 2
Operation temperature	-40 – 85°C (-40 – 185°F)
Light spectrum sensitivity area	400 – 1100 nm

9 Mounting

VAMP 125 DIN RAIL MOUNTING

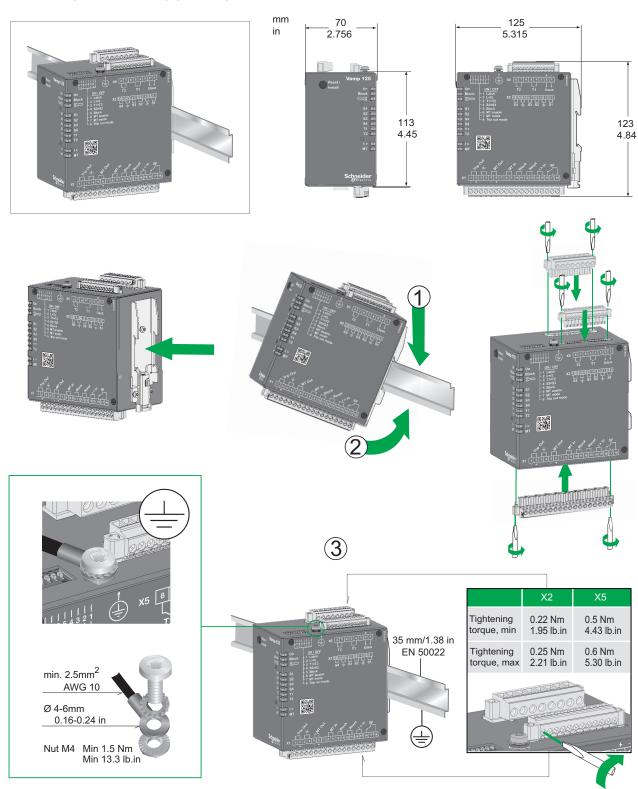


Figure 9.1: DIN rail mounting

VAMP 125 PANEL MOUNTING

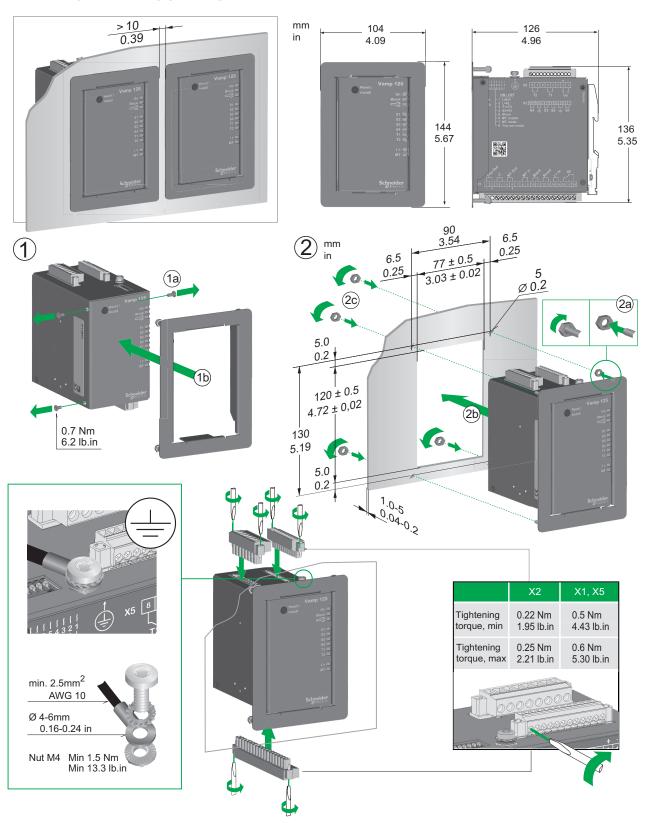


Figure 9.2: Panel mounting

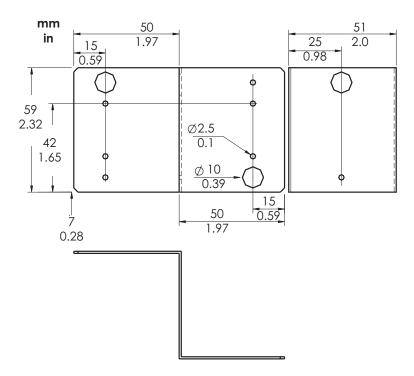


Figure 9.3: VYX 001 mounting plate for sensors

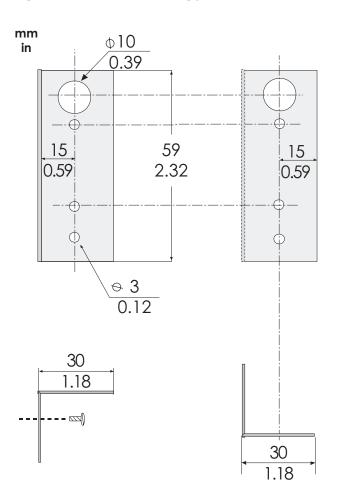


Figure 9.4: VYX 002 mounting plate for sensors

10 Order information

When ordering, please state:

• Type designation: V125

Quantity:

• Accessories (see respective ordering code):

Accessories

Order code	Description	Note
VA 1 DA-6	Arc sensor	Cable length 6 m
VA 1 DA-20	Arc sensor	Cable length 20 m
VA 1 DA-6s	Arc Sensor, shielded	Cable length 6 m
VA 1 DA-20s	Arc Sensor, shielded	Cable length 20 m
VA 1 DA-6-HF	Arc Sensor, halogen free	Cable length 6 m
VA 1 DA-20-HF	Arc Sensor, halogen free	Cable length 20 m
VA 1 EH-6	Arc Sensor (Pipe type)	Cable length 6 m
VA 1 EH-20	Arc Sensor (Pipe type)	Cable length 20 m
VA 1 GIS-1,5	Arc Sensor, shielded with GIS adapter	Cable length 1.5 m
VA 1 GIS-3	Arc Sensor, shielded with GIS adapter	Cable length 3 m
VA 1 GIS-5	Arc Sensor, shielded with GIS adapter	Cable length 5 m
VA 1 GIS-10	Arc Sensor, shielded with GIS adapter	Cable length 10 m
VYX 001	Surface Mounting Plate for Sensors	Z-shaped
VYX 002	Surface Mounting Plate for Sensors	L-shaped
VYX 328	Surface Mounting Plate for VA 1 DV Sensor	U-shaped
VYX 833	Door mount bracket, 71mm	For VAMP 125, IP 20

Customer Care Centre

http://www.schneider-electric.com/CCC

Schneider Electric

35 rue Joseph Monier 92506 Rueil-Malmaison FRANCE

Phone: +33 (0) 1 41 29 70 00 Fax: +33 (0) 1 41 29 71 00

www.schneider-electric.com

Publication version: V125/en M/A001